Effects of Plant Source, Age, and Foliar Molasses Application on Brix Readings of Kale Extracts
Lingyu Huang, Changzheng Wang* and Michael Bomford
Community Research Service, Kentucky State University
Frankfort, KY 40601

ABSTRACT

Refractometers estimate the soluble solid content of juice by measuring the refraction of light passing through it, expressed in ºBrix. They are commonly used to assess fruit ripeness, but have also been proposed as instruments for measuring vegetable quality. In a series of three experiments we tested the precision and variation in Brix values of kale (Brassica oleracea L., Acephala group) extracts as a function of source, leaf age, leaf moisture content, and storage duration. We measured the Brix of filtered juice from fresh leaves harvested from three Kentucky producers and two supermarkets, then refrigerated in sealed plastic bags for 0, 7, and 18 days. A second experiment compared extracts of young and mature kale leaves over 2 weeks of refrigerated storage. A third experiment compared extracts of untreasted leaves with those of leaves sprayed 2 weeks before harvest with a solution of black molasses, which is reputed to increase leaf soluble solid content. Despite the large variation between leaves, leaf source and leaf age affected mean Brix values. Leaves from one local producer and one supermarket had higher values than leaves from other sources. No consistent effect was found due to pre-harvest molasses treatment, post-harvest storage time, or leaf age at harvest. Leaf moisture content was inversely correlated with Brix, which increased rapidly in wilting leaves. A better understanding of any relationship between Brix values and vegetable quality parameters is needed before Brix value can be accepted as a vegetable quality indicator.

RESULTS

Refractometers estimate the soluble solid content of juice by measuring the refraction of light passing through it, expressed in ºBrix. They are commonly used to assess fruit ripeness, but have also been proposed as instruments for measuring vegetable quality. In a series of three experiments we tested the precision and variation in Brix values of kale (Brassica oleracea L., Acephala group) extracts as a function of source, leaf age, leaf moisture content, and storage duration. We measured the Brix of filtered juice from fresh leaves harvested from three Kentucky producers and two supermarkets, then refrigerated in sealed plastic bags for 0, 7, and 18 days. A second experiment compared extracts of young and mature kale leaves over 2 weeks of refrigerated storage. A third experiment compared extracts of untreated leaves with those of leaves sprayed 2 weeks before harvest with a solution of black molasses, which is reputed to increase leaf soluble solid content. Despite the large variation between leaves, leaf source and leaf age affected mean Brix values. Leaves from one local producer and one supermarket had higher values than leaves from other sources. No consistent effect was found due to pre-harvest molasses treatment, post-harvest storage time, or leaf age at harvest. Leaf moisture content was inversely correlated with Brix, which increased rapidly in wilting leaves. A better understanding of any relationship between Brix values and vegetable quality parameters is needed before Brix value can be accepted as a vegetable quality indicator.

INTRODUCTION

Refractometers are commonly used to assess fruit ripeness, but they have also been proposed as instruments for measuring vegetable quality. Brix (1966) published the book "USING A REFRACTOMETER TO TEST THE QUALITY OF FRUITS & VEGETABLES" and "BRIX QUALITY CHARTS" were provided to guide consumers. However, the scientific base for these charts is questionable. It is not clear whether Brix value really reflects quality of vegetables and how Brix may vary due to the maturity and storage conditions.

OBJECTIVE

To determine the variation in Brix values of kale (Brassica oleracea L., Acephala group) juice due to the source, leaf age, leaf moisture content and storage conditions.

MATERIALS AND METHODS

In experiment 1, kale were purchased from three Kentucky producers and two supermarkets, then refrigerated in plastic bags for 0, 7, and 18 days. On each sampling day, kale leaves were freed of the stems and the juices were squeezed out and filtered through nylon cloth before the Brix value was determined with a hand-held refractometer. Moisture content of kale leaves was determined as the weight loss on drying in a oven at 105 C to constant weight. Samples were ashed at 350 C for 48 hours to determine their ash content. In experiment 2, newly-unielded (young) and mature leaves were harvested from kale grown on the research farm at Kentucky State University, and stored in zip loc bags placed on a refrigerator for 2 weeks. Brix value and moisture content were determined as in experiment 1. In experiment 3, kale grown under the same condition were spread with or without a solution of black molasses, reputed to increase soluble solid content. Two weeks later, the leaves were collected and measured for Brix and moisture content. In experiment 4, kale from the same source were stored in open or sealed plastic bags stored either at room temperature or in a refrigerator. The Brix value and moisture content were determined as described above.

CONCLUSION

A better understanding of any relationship between Brix values and vegetable quality parameters is needed before Brix value can be accepted as a vegetable quality indicator.

SUMMARY OF RESULTS

1. There was large variation between leaves in Brix value (CV=27%).
2. There is no significant difference in Brix value between young and mature leaves even though mature leaves had higher ash content.
3. Kale from two local sources (Clearyhill and KSU) and one supermarket (Wal-mart) had higher Brix value.
4. Pre-harvest molasses treatment and post-harvest storage time did not affect Brix value of kale stored in a refrigerator.
5. Storage in sealed bags prevented loss of moisture and changes in Brix value.
6. There is a quadratic relationship between moisture content and Brix value, which increased rapidly in wilting leaves.