Effects of Farm Scale on Land, Labor, and Energy Efficiency in Organic Crop Production

Michael Bomford, Tony Silvernail, Jon Cambron, and Joni Nelson
Objectives

• Compare sweet sorghum and sweet potato to corn in terms of
 – Yield (land use efficiency)
 – Energy use efficiency
 – Labor use efficiency

• Compare efficiencies at three small organic farm scales
 – Biointensive
 – Market garden
 – Small farm
Methods: Crops

<table>
<thead>
<tr>
<th>Common name</th>
<th>Image</th>
<th>Latin name</th>
<th>Food</th>
<th>Fuel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn</td>
<td></td>
<td>Zea mays</td>
<td>Sweet corn, grain</td>
<td>Ethanol</td>
</tr>
<tr>
<td>Soybean</td>
<td></td>
<td>Glycine max</td>
<td>Edamame, grain</td>
<td>Biodiesel</td>
</tr>
<tr>
<td>Sweet sorghum</td>
<td></td>
<td>Sorghum bicolor</td>
<td>Sorghum syrup, grain</td>
<td>Ethanol</td>
</tr>
<tr>
<td>Sweet potato</td>
<td></td>
<td>Ipomoea batatas</td>
<td>Sweet potato</td>
<td>Ethanol</td>
</tr>
</tbody>
</table>

- 4 year rotation
- Winter cover crop of rye/vetch each year
- 5 year study (2008-2012)
Small Farm Scales

• Biointensive
 – Human-powered; no fossil fuels
 – Smallest scale

• Market garden
 – Walk-behind tractor is largest fossil fuel powered machine

• Small farm
 – Conventional 4-wheeled tractors and implements
Biointensive mini-farming techniques make it possible to grow food using

- 99% less energy in all forms - human and mechanical,
- 66-88% less water, and
- 50-100% less fertilizer, compared to commercial agriculture.

They also produce two to six times more food and build the soil.”

John Jeavons
Rep 1
Small farm
Bio-intensive
38 m
22 m
2008

Rep 2
Small farm
Bio-intensive
34 m
6 m

Rep 3
Small farm
Bio-intensive
18 m
7 m

Rep 4
Small farm
Bio-intensive
34 m
6 m

Market garden

Corn
Soybean
Sweet potato
Sweet sorghum
Farm scales

Small farm

Small farm

Market garden

Market garden

Biointensive
Data Collection

• Labor
 – Every minute in field by scale and crop
 – Labor intensity (for conversion to metabolic energy input)

<table>
<thead>
<tr>
<th>Task</th>
<th>Metabolic Equivalent of Task</th>
<th>Metabolic Energy Input (kJ/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digging, cutting sorghum cane (moderate to vigorous effort)</td>
<td>5.0</td>
<td>28</td>
</tr>
<tr>
<td>Weeding, hoeing (light to moderate effort)</td>
<td>3.5</td>
<td>20</td>
</tr>
<tr>
<td>Driving tractor (light effort)</td>
<td>2.8</td>
<td>16</td>
</tr>
</tbody>
</table>

Data Collection

- **Fuel**
 - Every mL of gasoline (34.6 kJ/mL, US-DOE) or diesel (38.7 kJ/mL, US-DOE) by scale and crop

- **Yield**
 - **Corn**
 - Fresh ears of sweet corn (3.5 MJ/kg, USDA)
 - Dried kernels of field corn (15.2 MJ/kg, USDA)
 - **Sweet sorghum**
 - Fresh cane (2.3 MJ/kg, Univ. of Kentucky)
 - **Soybean**
 - Edamame pods (6.1 MJ/kg, USDA)
 - Dried and shelled field beans (18.7 MJ/kg, USDA)
 - **Sweet potato**
 - Fresh tubers (3.6 MJ/kg, USDA)
Results: Annual labor input by farm scale and phase, 2008-2012

Labor input (min/m²)

<table>
<thead>
<tr>
<th></th>
<th>Biointensive</th>
<th>Market Garden</th>
<th>Small Farm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prep</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plant</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manage</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harvest</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A: Prep: 6, Plant: 6, Manage: 6
B: Prep: 2, Plant: 1, Manage: 1
C: Plant: 1
Results: Annual direct energy input by farm scale, 2008-2012

Energy input (MJ/m²)

- **Biointensive**: B
- **Market Garden**: A
- **Small Farm**: A

Energy Types:
- **Metabolic E** (light green)
- **Fossil E** (dark green)
Results: Annual energy yield by farm scale and crop, 2008-2012

<table>
<thead>
<tr>
<th>Farm Scale</th>
<th>Energy Yield (MJ/m²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biointensive</td>
<td></td>
</tr>
<tr>
<td>Market Garden</td>
<td></td>
</tr>
<tr>
<td>Small Farm</td>
<td></td>
</tr>
</tbody>
</table>

- Sweet potato
- Soybean
- Sweet sorghum
- Corn

Note: The chart shows the percentage contribution of each crop to the total energy yield.
Results: Energy output/input by farm scale, 2008-2012

- Biointensive: A
 - Sweet potato: 3
 - Soybean: 1
 - Sweet sorghum: 8
 - Corn: 2

- Market Garden: B
 - Sweet potato: 2
 - Soybean: 1
 - Sweet sorghum: 4
 - Corn: 1

- Small Farm: B
 - Sweet potato: 2
 - Soybean: 1
 - Sweet sorghum: 4
 - Corn: 1
Conclusions

• Scaling up saves time
 – Market Garden used 80% less time per unit area than Biointensive
 – Small Farm used 57% less time than Market garden and 91% less time than Biointensive

• Move from metabolic power to internal combustion power has energy cost
 – Market Garden and Small Farm plots used about 50% more energy per unit area than Biointensive
 – Indirect energy cost of machinery and tool manufacturing not included
Conclusions

• Yield independent of scale, overall, but some interaction between scale and crop:
 – Sweet sorghum best at small scale
 – Corn and sweet potato best at larger scale

• Net energy gain at all scales
 – Overall energy return similar to that of US organic corn production (Gomiero et al. 2011)
 – Biointensive gave greatest energy return
 • Advantage mainly due to sweet sorghum
 • Overall EROI of 13 similar to Mexican traditional human-powered corn production (Pimentel & Pimentel 1997)
Thanks!

• Brian Geier
• John Rodgers
• Moises Hernandez
• Joelle Johnson
• Eddie Reed
• KSU Farm Crew
• Kirk Pomper
• Teferi Tsegaye